taptap点点手机端>taptap点点官方网址 >2024年>第5期

基于增强长短期记忆网络的空气处理系统故障诊断

Fault diagnosis of air handling system based on enhanced long short-term memory network

陆由付[1] 高鹤[2] 冯雅卫[2]
[1]山东高速集团有限公司,济南;[2]山东正晨科技股份有限公司,济南

摘要:

taptap点点手机端空气处理系统具有很强的动态时变特性和批次动态特性,为了能有效地诊断所检测到的故障模式,本文构建了一种基于增强长短期记忆(LSTM)网络、能高效识别待辨识故障数据稀疏慢特征的故障诊断模式。在ASHRAE研究项目RP-1312实验数据集上进行的案例研究表明,与相关的故障识别方法相比,该方法在识别空气处理系统故障方面有较大的改进。

关键词:故障诊断;空气处理系统;动态时变特性;批次动态特性;慢特征;长短期记忆网络

Abstract:

HVAC air handling systems have strong dynamic time-varying and batch-dynamic characteristics. In order to effectively diagnose the detected fault patterns, this paper constructs a fault diagnosis mode based on enhanced long short-term memory (LSTM) network, which can efficiently identify the sparse and slow features of the fault data. A case study based on the ASHRAE research project RP-1312 experimental dataset shows that the proposed method has a significant improvement in identifying air handling system faults compared with the related fault identification methods.

Keywords:fault diagnosis; air handling system; dynamic time-varying characteristic; batch-dynamic characteristic; slow feature; long short-term memory (LSTM) network

    你还没注册?或者没有登录?这篇期刊要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!

Baidu
taptap点点链接